КЛАСТЕРИЗАЦИЯ СОРТОВ РИСА ПО АДАПТИВНОСТИ К ЗАСОЛЕНИЮ В ФАЗУ ПРОРОСТКОВ

Малюченко Е.А.; Бушман Н.Ю.; Бруяко В.Н.

ФГБНУ «Всероссийский научно-исследовательский институт риса», г. Краснодар

Аннотация. Устойчивость к засолению на различных фазах развития растений не одинакова. Рис относительно устойчив к засолению во время прорастания и активного кущения, созревания, но чувствителен в течение фазы проростков и цветения. Устойчивость к засолению в фазу проростков и репродуктивные стадии слабо связаны, поэтому только образцы, объединяющие признаки на обеих фазах могут быть адаптивны к стрессу в течение вегетационного периода [6-8].

Материалы и методы. Полученные ранее результаты показывают, что солеустойчивость российских образцов во многих случаях определяется комплексом неспецифических генов, одновременно повышающих адаптивность к другим стрессам, например, высоким и низким температурам в различные фазы развития [1-5]. Существует несколько методик изучения данного признака. Общепринятая, в которой измеряют изменение массы проростков по сравнению с контрольным образцом (сорт Курчанка) при действии стресса, или по сравнению со значением признака у того же образца, но без воздействия стресса [9-11].

По изменению признаков «длина зародышевых корешков» и «высота проростка» при засолении и в контрольном варианте опыта разбили сорта на группы (кластеры). В 1 группу с максимальной устойчивостью к засолению вошло 7 сортов, во вторую 20 сортов, а в третью 21 сорт (рисунок 1).

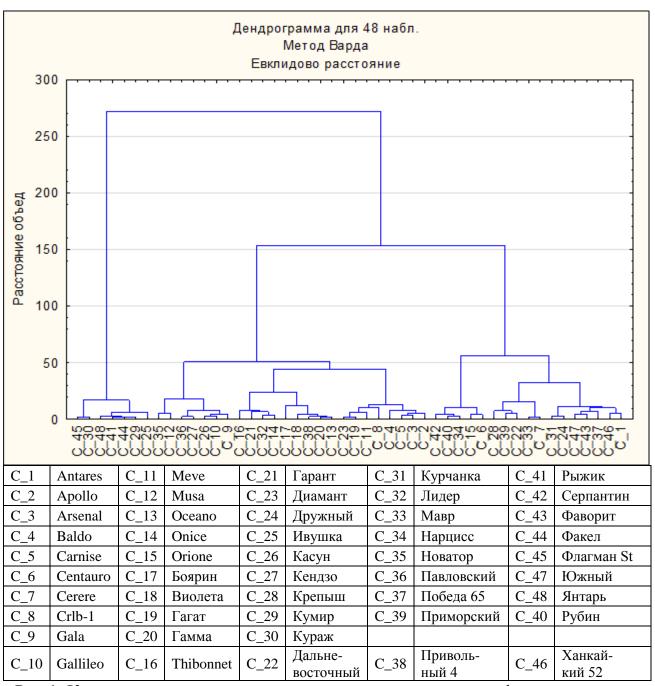


Рис.1. Кластеризация сортов по адаптивности к засолению в фазу проростков

Кластерный анализ разделил сорта на 3 группы. Достоверность разделения групп по солеустойчивости подтвердили результаты дисперсионного анализа (рисунок 1, таблица 1).

по устойчивости к засолению в фазу проростков

	MS_1	SS ₁	MS ₂	SS	F	р
Показатели				2		
Длина корня, см (контроль)	9,43	2	111,26	45	1,90	0,16
Std.Err.	0,12	2	2,17	45	1,27	0,28
Длина корня, см (засоление)	0,88	2	77,95	45	0,25	0,77
Std.Err.	0,01	2	3,87	45	0,09	0,90
Изменение длины корня при стрессе, %	4162,57	2	1459,35	45	64,17	0,00
Высота проростка, см (контроль)	39,19	2	120,99	45	7,28	0,00
Std.Err.	0,04	2	2,79	45	0,33	0,71
Высота проростка, см (засоление)	5,43	2	84,34	45	1,44	0,24
Std.Err.	0,00	2	5,78	45	0,01	0,98
Изменение высота проростка при стрессе, %	3958,33	2	1041,16	45	85,54	0,00

 SS_1 - сумма квадратов межгрупповая, SS_{2-} сумма квадратов внутригрупповая, MS — дисперсия , MS_1 — межгрупповая дисперсия, MS_2 — внутригрупповая дисперсия, Std — критерий Фишера, Std — уровень значимости, Std — стандартная ошибка

Только признак «высота проростка» в контрольном варианте и изменение

признаков при стрессе достоверно разделяло кластеры.

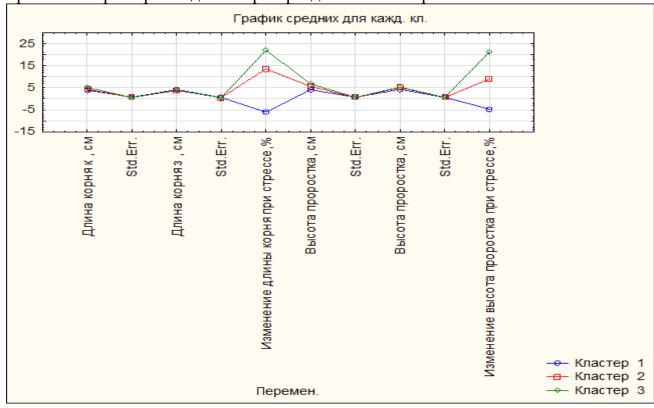


Рис. 2. Характеристики достоверно разделяющие изучаемые кластеры

Средние значения признаков в каждом из выделенных кластеров приведены в таблице 2. Образцы с максимальной солеустойчивостью объединили в первый кластер. Наименее солеустойчивые образцы попали в третий кластер,

для которого среднее изменение длины корня при стрессе составило 22%, а стебля 21%. Для образцов второго кластера эти признаки были соответственно 14% и 9%.

Таблица 2

Средние значения в кластерах

Наименование признака	Кластер 1	Кластер 2	Кластер3
Длина корня, см (контроль)	3,94	4,35	5,10
Std.Err.	0,72	0,58	0,58
Длина корня, см (засоление)	4,18	3,78	3,96
Std.Err.	0,58	0,55	0,52
Изменение длины корня при стрессе, %	-6,05	13,59	22,02
Высота проростка, см (контроль)	4,12	5,65	6,77
Std.Err.	0,68	0,59	0,64
Высота проростка, см (засоление)	4,30	5,12	5,31
Std.Err.	0,62	0,60	0,60
Изменение высота проростка при стрессе, %	-4,71	9,0	21,34

Std.Err. - Стандартная ошибка

Описательные статистики для каждого кластера приведены в таблицах 3 - 5 Таблица 3

Описательные статистики для кластера 3. Кластер содержит 21 сорт

Описательные статистики для кластера 3. Кластер содержит 21 сорт				
	Среднее	Стандартное	Дисперсия	
Признаки	значение	отклонение		
Длина корня, см (контроль)	5,10	2,02	4,10	
Std.Err.	0,58	0,24	0,05	
Длина корня, см (засоление)	3,96	1,57	2,47	
Std.Err.	0,52	0,34	0,11	
Изменение длины корня при стрессе, %	22,02	4,62	21,38	
Высота проростка, см (контроль)	6,77	1,88	3,54	
Std.Err.	0,64	0,30	0,09	
Высота проростка, см (засоление)	5,31	1,483	2,20	
Std.Err.	0,60	0,351	0,12	
Изменение высота проростка при стрессе, %	21,34	4,60	21,17	

Std.Err.-Стандартная ошибка

Таблица 4 Описательные статистики для кластера 2. Кластер содержит 20 сортов

	Среднее	Стандартное	Дисперсия
Признаки	значение, см	отклонение, см	
Длина корня, см (контроль)	4,35	1,15	1,33
Std.Err.	0,58	0,19	0,03
Длина корня, см (засоление)	3,78	1,12	1,26
Std.Err.	0,55	0,25	0,06
Изменение длины корня при стрессе, %	13,59	7,21	51,99
Высота проростка, см (контроль)	5,65	1,51	2,30
Std.Err.	0,59	0,19	0,03
Высота проростка, см (засоление)	5,12	1,33	1,78
Std.Err.	0,60	0,36	0,13
Изменение высота проростка при стрессе, %	9,02	5,50	30,30

Std.Err.-Стандартная ошибка

Таблица 5 Описательные статистики для кластера 1. Кластер содержит 7 сортов

	Среднее	Стандартное	Дисперсия
	значение,	отклонение,	
Признаки	СМ	СМ	
Длина корня, см (контроль)	3,94	0,80	0,64
Std.Err.	0,72	0,21	0,04
Длина корня, см (засоление)	4,18	0,86	0,74
Std.Err.	0,58	0,22	0,05
Изменение длины корня при стрессе, %	-6,05	2,70	7,29
Высота проростка, см (контроль)	4,12	1,03	1,06
Std.Err.	0,68	0,19	0,03
Высота проростка, см (засоление)	4,30	1,02	1,05
Std.Err.	0,62	0,35	0,12
Изменение высота проростка при стрессе, %	-4,71	2,64	6,97

Std.Err.-Стандартная ошибка

Таблица 6 Сорта, входящие в кластеры с различной устойчивостью к засолению

Сорт	Кла- стер	Расстояние от центра кластера	Сорт	Кла- стер	Расстояние от центра кла- стера
Antares	2	1,19	Ивушка	1	1,46
Apollo	3	2,53	Касун	3	2,17
Arsenal	3	2,59	Кендзо	3	2,03
Baldo	3	3,67	Крепыш	2	2,98
Carnise	3	2,12	Кумир	1	1,02
Centauro	2	4,03	Кураж	1	1,85
Cerere	2	2,58	Курчанка	2	1,07
Crlb-1	3	2,53	Лидер	3	2,55
Gala	2	2,78	Мавр	2	2,69
Gallileo	3	2,40	Нарцисс	2	3,61
Meve	3	1,04	Новатор	2	4,32
Musa	2	3,59	Павловский	3	1,66
Oceano	3	2,25	Победа 65	2	2,14
Onice	3	2,05	Привольный 4	3	1,70
Orione	2	3,35	Приморский	2	3,76
Thibonnet	3	3,04	Рубин	2	2,67
Боярин	3	2,93	Рыжик	1	0,66
Виолета	3	1,29	Серпантин	2	3,79
Гагат	3	0,90	Фаворит	2	1,01
Гамма	3	2,16	Факел	1	0,93
Гарант	3	3,03	Флагман St	1	1,56
Дальневосточный	2	3,74	Ханкайский 52	2	2,14
Диамант	3	1,36	Южный	2	1,81
Дружный	2	1,14	Янтарь	1	0,71

Вывод. Полученные нами данные показывают отсутствие достоверных различий по признакам, характеризующим проросток у сортов риса, в том числе и по сравнению со стандартом. В тоже время изменение признака при воздействии стресса у образцов было достоверно и позволяет кластеризовать образцы на группы, различающиеся по солеустойчивости.

Литература

- 1. Гончарова, Ю.К. Природа гетерозисного эффекта / Ю.К. Гончарова, Е.М. Харитонов, Е.В Литвинова // Доклады РАСХН. -2010. №4. -С. 10-12.
- 2. Гончарова, Ю.К. Наследование признаков, определяющих физиологический базис гетерозиса у гибридов риса / Ю.К. Гончарова // Сельскохозяйственная биология. 2010. № 5. С.72-75.
- 3. Гончарова, Ю.К. Генетика признаков, обеспечивающих эффективность минерального питания у риса / Ю.К. Гончарова, Е.В. Литвинова, Н.А. Очкас // Труды КГАУ. 2010.-№ 24.- С. 54-58.
- 4. Гончарова, Ю.К. Генетические основы повышения продуктивности риса, диссертация на соискание ученой степени доктора наук / Ю.К. Гончарова. Краснодар, 2014. С. 15.
- 5. Гончарова, Ю.К. Генетические основы повышения продуктивности риса / Ю.К. Гончарова, Е.М. Харитонов. Краснодар :ООО «Просвещение ЮГ», 2015. С. 38
- 6. Гончарова, Ю.К. Генетика признаков, определяющих адаптивность риса (Oryza sativa L.) к абиотическим стрессам / Ю.К. Гончарова, Е.М. Харитонов, Е.А. Малюченко // Экологическая генетика. 2015. № 3. С.17-19.
- 7. Харитонов, Е.М. Взаимосвязь между устойчивостью к высоким температурам и стабильностью урожаев у риса / Е.М. Харитонов, Ю.К. Гончарова // Аграрная Россия. 2008. -№ 3. -С. 22-24.
- 8. Харитонов, Е.М. Гончарова. Механизм солеустойчивости российских сортов риса / Е.М. Харитонов, Ю.К. Гончарова // Аграрный вестник Урала. 2010.- №8 (74).- С.45 48.
- 9. Харитонов, Е.М. О генетико-физиологических механизмах солеустойчивости у риса (Огуza sativa L.) / Е.М. Харитонов, Ю.К. Гончарова // Сельскохозяйственная биология. 2013.- № 3.- С. 3-11
- 10. Goncharova, J.K. Inheritance of heat resistance in rice / J.K. Goncharova // Russian Jurnal of Genetics: Applied Research. 2011. Vol. 3. P.248-251.
- 11. Goncharova, J.K., Kharitonov E.M. Polymorphism of traits determining uptake of phosphorus by rice varieties (Oryza sativa L.) of russian and foreign breeding / J.K. Goncharova, E.M. Kharitonov // Vavilov Journal of Genetics and Breeding. 2015.- 19 (2):74-82.