СРАВНИТЕЛЬНАЯ ОЦЕНКА СОДЕРЖАНИЯ РЕСВЕРАТРОЛА В ВИНАХ КУБАНИ

Митрофанова Е.А.¹, канд. с.-х. наук, Гугучкина Т.И.¹, д-р с.-х. наук, проф., Якуба Ю.Ф.¹, д-р хим. наук, доц., Прах А.В.¹, канд. с.-х. наук, Трошин Л.П.², д-р биол. наук, проф.

¹ФГБНУ «Северо-Кавказский федеральный научный центр садоводства, виноградарства, виноделия», Российская Федерация, г. Краснодар ²ФГБОУ ВО «Кубанский государственный аграрный университет им. И.Т. Трубилина», Российская Федерация, г. Краснодар

Аннотация. Сравнительное исследование столовых вин из 20 красных технических сортов винограда, произрастающих в Краснодарском крае по содержанию трансресвератрола.

Ключевые слова. Виноград, сорт, фитоалексин, транс-ресвератрол, вино, анализ.

COMPARATIVE EVALUATION OF THE CONTENT OF RESVERATROL IN WINES OF KUBAN

Mitrofanova E.A.¹, Cand. Sc. (Agric.), Guguchkina N.I.¹, Dr. Sc. (Agric.), Prof., Jakuba Yu.F.¹, Dr. Sc. (Chem.), Ass. Prof., Prakh A.V.¹, Cand. Sc. (Agric.), Troshin L.P.², Dr. Sc. (Biol.), Prof.

¹FSBI «North Caucasus Federal Scientific Center for Horticulture, Viticulture, Winemaking», Russian Federation, Krasnodar

²FSBEI HE «Kuban State Agrarian University named after I.T. Trubilin», Russian Federation, Krasnodar

Abstract. A comparative study of table wines from 20 red technical grape varieties grown in the Krasnodar region on the content of trans - resveratrol.

Keywords. Grapes, variety, phytoalexin, trans-resveratrol, wine, analysis

Главной целью виноградарства является улучшение качества винограда как, в большей мере, для ампелотерапии и виноделия, так и, в меньшей, — энотерапии. Качественными показателями винограда являются сахара, органические кислоты, фенольные вещества, аминокислоты, ароматические соединения и другие компоненты. Путем биосинтеза растения производят широкий спектр вторичных метаболитов, среди которых находятся и фенольные соединения, важные как для растений, так и для человека: во-первых, они защищают растения от биотических и абиотических стрессовых факторов, во-вторых, большинство этих метаболитов отвечают за органолептические свойства производимых из них продуктов, в-третьих, эти соединения являются уникальными источниками пищевых добавок и фармацевтических препаратов.

Наибольший интерес среди фенольных соединений получил ресвератрол (3,4',5-тригидроксистильбен), который действует как фитоалексин и синтезируется в клетках кожицы и листьев при грибных инфекциях, ультрафиолетовом свете, радиации и других внешних воздействиях [3, 8].

Ресвератрол также синтезируется неповреждёнными растениями, но в значительно меньшей степени [16]. Установлено, что устойчивые к болезням сорта винограда обычно производят и накапливают ресвератрол в больших количествах, чем сорта *Vitis vinifera* L. Так, например, сорт Pinot Noir (Пино Нуар, Пино фран или Пино черный), довольно восприимчивый к грибным инфекциям, производит и накапливает более высокую концентрацию ресвератрола, чем другие сорта, независимо от характера их происхождения [18, 12, 13].

Ресвератрол существует в виде транс- и цис-формах, а структуры его изомеров изображены на рисунке 1.

Рисунок 1. Химическая структура транс- (А) и цис-ресвератрола (В)

Первое упоминание о ресвератроле было сделано 1939 году в статье японского ученого Michio Takaoka [17]. Количество транс-ресвератрола в винограде от 10 до 100 раз больше, чем в других растениях. Так, содержание этого стильбена в винограде составляет от 0,16 до 3,54 мкг/г, а в высушенной кожице винограда до 24 мкг/г. Концентрация ресвератрола в красных винах варьирует от 0,1 до 14,3 мг/л, в белых - 0,1-2,1 мг/л [15].

Доказано, что высокая концентрация ресвератрола обнаруживается в винах, полученных в более прохладных климатических регионах. Наоборот, значительно более низкая концентрация ресвератрола встречается в винах, полученных в относительно теплых и сухих климатических условиях. Большим достоинством ресвератрола является регулирование иммунной системы человека, лечение различных воспалений, химиопрофилактика, нейро- и кардиопротекция, липидное регулирование, а также в лечении таких заболеваний как диабет, болезнь Паркинсона и рак. Кроме того, он проявляет антибактериальную, противовирусную и противогрибную активность [14].

Таким образом, знание о факторах, влияющих на количество этого соединения в вине, имеет важное значение. Хорошо известно, что содержание ресвератрола в вине зависит, в первую очередь, от сорта винограда [4], клона [10], метеорологических [4] и почвенных условий [5], а также агротехнических приемов [6, 7, 9, 11].

Благодаря физико-химическим свойствам ресвератрола, а также сложному составу биологических матриц, в которых он встречается, его определение является сложным и трудоемким. Существует много аналитических методов для определения ресвератрола в вине, которые основаны на применении высокоэффективной жидкостной и газовой хроматографии, капиллярного электрофореза. В предложенной Научным центром виноделия методике определение ресвератрола осуществляется на приборе Капель-103 Р [1]. Она показывает хорошую чувствительность и воспроизводимость, сокращение затрат и расхода реактивов в 4 раза, а также обладает повышенным коэффициентом разделения при более коротком времени биохимического анализа.

Традиционно основу высококачественного виноделия составляют так называемые классические красные европейские сорта: Каберне-Совиньон и Мерло и др. Однако насаждения данных сортов обладают невысокой устойчивостью к низким зимним температурам и в годы с неблагоприятными зимами значительно повреждаются. В наблюдаемой погодно-климатической ситуации Краснодарского края все чаще встает вопрос о возделывании морозостойких сортов, дающих урожай высокого качества. Нами были отобраны сорта винограда, обладающие повышенной устойчивостью к низким зимним температурам и дающие урожай, пригодный для приготовления вин высокого качества.

Цель. Для достижения лучшей оценки влияния сорта винограда на содержание ресвератрола нами было выполнено сравнительное исследование столовых вин из 20 красных технических сортов винограда без поражения грибными болезнями, в одних и тех же климатических условиях и на одной и той же стадии созревания. Эта работа вносит вклад в повышение знаний о потенциале перспективных технических красных сортов винограда, произрастающих в Краснодарском крае, в том числе интродуцированных из-за рубежа (Молдавия, Сербия, Украина) и сортов селекции СКЗНИИСиВ.

Объекты и методы исследований. В статье освещены результаты многолетних (с 2014 г.) исследований 18 перспективных технических сортов винограда из различных зон Краснодарского края: Анапо-Таманской (Антарис, Варюшкин, Гранатовый, Достойный, Жупски Боядисер, Мицар, Плечистик, 40 лет Октября), Центральной (Алешковский, Владимир, Дмитрий, Курчанский, Левокумский, Олимпийский, Подлесный, Саперави северный, 40 лет Победы), а также Амур из Черноморской зоны Краснодарского края и двух контрольных западноевропейских всемирно известных и самых распространенных сортов Мерло и Каберне-Совиньон в этих же зонах.

Все агротехнические мероприятия на изучаемых сортах, в вышеуказанных хозяйствах проводились согласно системам возделывания винограда для этих зон. Внесение удобрений на плодоносящих виноградниках изучаемых хозяйств не производилось. В комплекс агротехнических мероприятий по уходу за виноградными насаждениями входили: сухая подвязка, катаровка, удаление поросли и операции с зелеными частями куста. К последним относятся: обломка побегов, развившихся из зимующих глазков, прощипывание и чеканка — удаление верхней части побегов, пасынкование — полное или частичное удаление боковых побегов второго порядка (пасынков), выросших в пазухах листьев.

Методы исследований. Свежий виноград, собранный в момент полной технической зрелости был переработан по классической технологии приготов-

ления красных столовых вин в цехе микровиноделия ФГБНУ СКФНЦСВВ. Объектом исследования служил транс-ресвератрол (3,4′,5-Trihydroxy-transstilbene, 5-[(1E)-2-(4-Hydroxyphenyl)ethenyl]-1,3-benzenediol, R5010, Resveratrol, ≥99% (HPLC), Product MERCK). При выполнении аналитической работы использовали натрия тетраборат (99,5 %, Sigma), кислоту борную (99,5 %, Sigma), кислоту соляную (х.ч., Vecton), натрия гидроксид (х.ч., Vecton).

Исследование проводили с использованием анализатора капиллярного ионного электрофоретического (система капиллярного электрофореза «Капель-104Т», ОАО «НПФ Люмэкс», Россия), оснащенного ультрафиолетовым фотометрическим детектором, работающим при длине волны 254 нм, а также кварцевым капилляром длиной 0,5 м до детектора, внутренним диаметром 75 мкм, источником высокого напряжения положительной полярности с регулируемым напряжением от 1 до 25 кВ и персональным компьютером с программным обеспечением «Мультихром». Полученные анализируемые пробы испытуемого вина и стандартного раствора транс-ресвератрола (в 10 %-ном этаноле) объемом 1 нанолитр дозировали в прибор не менее трех раз и регистрировали электрофореграммы.

Электрофоретическое определение количественного содержания трансресвератрола в вине проводили при положительном напряжении на капилляре 16 кВ и рекомендуемом термостатировании капилляра от 20 до 25°С. Ввод пробы осуществляли пневматически под давлением 30мБар в течение 5 секунд. Время анализа составляло 10 минут. В качестве рабочего электролита использовали водный раствор, содержащий 0,3% борной кислоты и 0,06 % натрия тетрабората. Приготовленный раствор использовали в течение рабочего дня. Между испытаниями проводили последовательную промывку капилляра в течение 2 минут 1 Н раствором кислоты соляной, затем дистиллированной водой, 1 Н раствором гидроксида натрия, дистиллированной водой и далее рабочим электролитом. Пример электрофореграммы определения ресвератрола в пробе вина показан на рисунке 2.

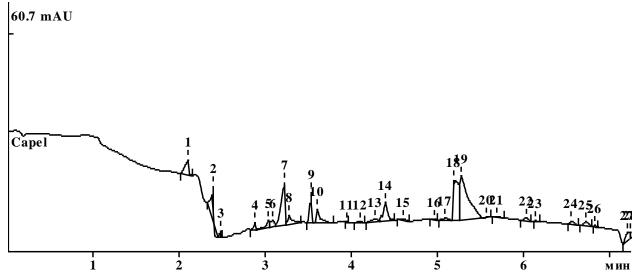


Рисунок 2. Электрофореграмма определения транс-ресвератрола в виноградном вине Мерло; 3 — транс-ресвератрола, разбавление пробы дистиллированной водой в 5 раз

Обсуждение результатов. Содержание ресвератрола в опытных образцах вин (рисунок 3) показало, что его концентрация в виноматериалах варьирует от $0.9 \text{ до } 11.4 \text{ мг/дм}^3$.

Наибольший уровень концентрации ресвератрола выявлен в виноматериале югославского сорта Жупски Боядисер (11,4 мг/дм³), в популяции которого нами отобран высокопродуктивный протоклон и назван Кучугурским Боядисером.

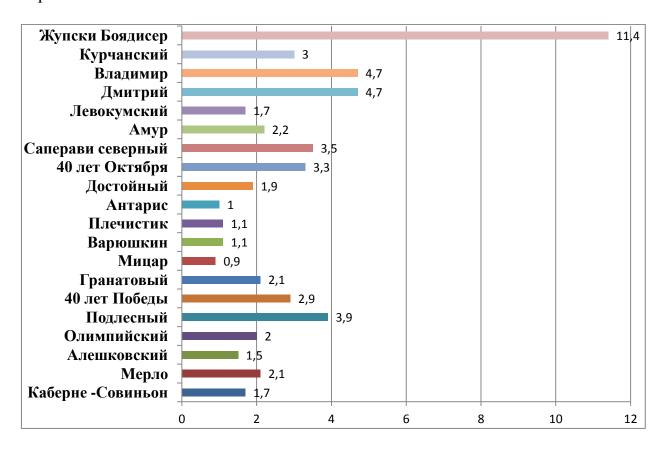


Рисунок 3. Содержание транс-ресвератрола в виноматериалах из различных сортов красного винограда (мг/дм³)

Средние значения ресвератрола (P=0,95) обнаружены в виноматериалах из сортов Владимир и Дмитрий (4,7 мг/дм³), Подлесный (3,9 мг/дм³), Саперави северный (3,5 мг/дм³), 40 лет Октября (3,3 мг/дм³), Курчанский и 40 лет Победы (3,0 и 2,9 мг/дм³ соответственно). С другой стороны, как показал анализ виноматериалов, сорта Антарис, Варюшкин, Мицар и Плечистик синтезируют более низкое содержание ресвератрола (1,0 и 0,9 мг/дм³ соответственно). В виноматериалах из остальных сортов: Амур, Гранатовый, Достойный, Олимпийский, Левокумский и Алешковский содержание ресвератрола было на уровне значений классических сортов Каберне-Совиньон и Мерло, и составляло 1,5-2,2 мг/дм³.

Выводы. Сравнительные исследования различных виноматериалов на предмет содержания в них ресвератрола показали, что виноматериалы из устойчивых сортов винограда, таких как Жупски Боядисер, Курчанский, Владимир, Дмитрий, Подлесный, Саперави северный, 40 лет Октября и 40 лет Победы, произрастающие в Краснодарском крае, по содержанию стильбена ресве-

ратрола в 2-5 раз превышали содержание этого фитоалексина в западноевропейских сортах Каберне-Совиньон и Мерло. Введение в районированный сортимент Северного Кавказа этих ценных сортов винограда позволит расширить ассортимент высококачественных сухих и ликерных вин, способствующих укреплению здоровья населения нашей страны.

Литература

- 1. Гугучкина Т.И., Агеева Н.М, Якуба Ю.Ф. Применение приборов капиллярного электрофореза серии «Капель-103» для исследований винодельческой продукции // Тез. докл. юбил. межд. науч.-практ. конф. «Пищевые продукты XXI века».М. 2001. С. 269-270.
- 2. Гугучкина Т.И., Митрофанова Е.А., Трошин Л.П. Содержание ресвератрола в винах из красных технических сортов винограда Кубани // Русский виноград. 2018. №7. С. 179-183.
- 3. Гугучкина Т.И., Митрофанова Е.А., Якуба Ю.Ф., Трошин Л.П. Ресвератрол в перспективных красных технических сортах винограда Кубани // Электронный журнал ФГБНУ СКФНЦСВВ «Плодоводство и виноградарство Юга России». 2018. Т. 18. С. 153-156.
- 4. Bavaresco L., Pezzutto S., Gatti M. [et al.] Role of the variety and some environmental factors on grape stilbenes // Vitis. 2007. V. 46. P. 57-61.
- 5. Bavaresco L., Civardi S., Pezzutto S. [et al.] Grape production, technological parameters and stilbenic compounds as affected by lime induced chlorosis // Vitis. 2005. V. 4(2). P. 63-65.
- 6. Bavaresco L., Pezzutto S., Ragga A., Ferrari F., [et al.] Effect of nitrogen supply on trans-resveratrol concentration in berries of Vitis vinifera L. cv. Cabernet Sauvignon // Vitis. 2001. V. 40. P. 229-230.
- 7. Bavaresco L., Gatti M., Pezzutto S. [et al.] Effect of leaf removal on grape yield, berry composition and stilbene concentration // Am. J. Enol. Viticult. 2008. V. 9. P. 292-298.
- 8. Ector B.J., Magee J.B., Hegwood C.P. [et al.] Resveratrol concentration in Muscadine berries, juice, pomace, purees, seeds and wines // Am. J. Enol. Viticult. 1996. V. 47. P. 57-62.
- 9. Gatti M., Civardi S., Zamboni M. [et al.] Preliminary results on the effect of cluster thinning on stilbene concentration and antioxidant capacity of V. vinifera L. «Barbera» wine // Vitis. 2011. V. 50. P. 43-44.
- 10.Gatti M., Civardi S., Ferrari F. [et al.] Viticultural performances of different Cabernet Sauvignon clones // Acta Hortic. 2014. V. 1046. P. 659-664.
- 11.Gebbia N., Bavaresco L., Fregoni M. [et al.]. The occurrence of the stilbene pice atannol in some wines from Sicily // Vignevini. 2003. V. 30. P. 87-94.
- 12.Goldberg D.M., Karumanchiri A.NG, Yan E. [et al.] Direct gas chromatographic-mass spectrometric method to assay cis-resveratrol in wines: preliminary survey of its concentration in commercial wines // Agr. and Food Chem. 1995. V. 43. N 5. P. 1245-1250.

- 13.Jeandet T.P., Bessis S.R., Maume B.F. [et al.] Effect of enological practices on the resveratral isomer content of wine // J. Agricult. Food Chem. 1995 a. V. 43. P. 316-319.
- 14. Kursvietiene L., Stanevičienė I., Mongirdiene A. Multiplicity of effects and health benefits of resveratrol // Institute of Cardiology Jurga Bernatoniene, Medicina (Kaunas). 2016. V. 52(3). P. 48-55.
- 15.Mukherjee S., Dudley J.I, Das D.K. Dose-dependency of resveratrol in providing health benefits Dose Response // Dose-Response. 2010. V. 8(4). P. 478-500.
- 16.Pezet R., Cuenat Ph. Resveratral in wine: Extraction from skin during fermentation and post-fermentation standing of must from Gamay grapes // Am. J. Enol. Vitic. 1996. V. 47. P. 287-290.
- 17. Takaoka M. Resveratrol a new phenolic compound from Veratrum grandiflorum // J. Chem. Soc. Japan. 1939. V. 60. P. 1090-1100.
- 18.Siemann E.H., Creasy L.L. Concentration of phytoalexin resveratrol in wine // Am. J. Enol. Vitic. 1992. V. 43. P. 49-52.