ОСОБЕННОСТИ ПРОЦЕССОВ АРОМАТИЗАЦИИ И ОБРАТНЫХ ДОБАВОК

Татарченко И.И. 1,2 , д-р техн. наук, проф., Малеванная И.Е. 1,2

¹ФГБОУ ВО «Кубанский государственный технологический университет», Российская Федерация, г. Краснодар

²ФГБНУ «Всероссийский научно-исследовательский институт табака, махорки и табачных изделий», Российская Федерация, г. Краснодар

Аннотация. Целью участка ароматизации и обратных добавок являются придание табаку ароматических свойств, характерных для данной мешки; корректировка горючих свойств, заполняющей способности и вкусовых свойств табака.

Ключевые слова. Участок ароматизации, участок обратных добавок, цилиндр ароматизации, танки нанесения ароматизатора, буферный питатель-накопитель.

FLAVORING AND GQ AB

Tatarchenko I.I.^{1, 2}, Dr. Sc. (Tech.), Prof., Malevannaya I.E.^{1, 2}

¹FSBEI HE «Kuban State Technological University»,
Russian Federation, Krasnodar

²FSBSI All-Russian Research Institute of Tobacco, Makhorka and Tobacco Products,
Russian Federation, Krasnodar

Abstract. The purpose of the site of flavoring and reverse additives is to give tobacco the aromatic properties characteristic of the tobacco bag; adjustment of combustible properties, filling capacity and taste properties of tobacco.

Keywords. Flavoring, Go AB, Flavor Cylinder, Application Flavor Tank, Feeder.

Процесс ароматизации является одним из ключевых процессов на пищевкусовых предприятиях [1]. Ароматические свойства табачного дыма обуславливает естественный аромат табаков, из которых изготовлены сигареты [2]. Этот дегустационный показатель можно улучшить путем обработки табаков веществами, которые обладают приятным ароматом и улучшают в конечном итоге ароматические свойства табачного дыма.

Целью участка ароматизации и обратных добавок являются:

- придание табаку ароматических свойств, характерных для данной мешки;
- корректировка горючих свойств, заполняющей способности и вкусовых свойств табака.

Участок ароматизации и обратных добавок решает задачи:

1. Равномерное распределение ароматической жидкости на табак.

- 2. Пропорциональное добавление улучшенной жилки, расширенного табака, перемешивание их в цилиндре.
 - 3. Повышение экономического эффекта (добавление табачной мелочи).
- 4. Временное хранение готовой продукции, окончательное перемешивание, загрузка готовой продукции на CFS или BFS, загрузка готовой продукции на упаковку.
 - 5. Выбор пути загрузки партий жилки на AB Silos или участок GQ AB.

Процесс ароматизации заключается в добавлении в табак различных ароматических веществ, характерных для каждого типа мешки. Это улучшает ароматические свойства табака и придает каждой мешке свой специфический аромат [3-6].

Улучшенную жилку добавляют в целях повышения заполняющей способности, корректировки токсических свойств (смолы, никотина), качества горения сигареты и повышения экономического эффекта.

Расширенный табак добавляют в целях повышения заполняющей способности, корректировки токсических свойств, улучшения горения и вкусовых качеств сигареты.

Табачную мелочь (переработанный сигаретный брак) добавляют в целях повышения экономического эффекта. Табачную мелочь, в отличие от добавок жилки и расширенного табака, не подвергают процессу ароматизации, так как это уже готовая продукция. Добавляют в процесс после цилиндра ароматизации.

Параметры климата для участка ароматизации — влажность 58-63 %, температура 22 ± 3 °C.

Технологические задачи участка ароматизации выполняет следующее оборудование:

Цилиндр ароматизации

Цилиндр ароматизации предназначен для ароматизации табака и рассчитан на следующие параметры:

- поток 10000 кг/час при влажности 13,5-14,5 %;
- температура продукта на входе приблизительно 30 °C;
- плотность жидкого аромата от 0,9 до 1,04 г/мл;
- вязкость жидкого аромата при 20 $^{\circ}$ C от 5 до 50 мПа;
- номинальная скорость нанесения от 7 до 35 $\pi/10^3$ кг;
- средняя скорость нанесения от 15 до 25 $\pi/10^3$ кг.

Танки нанесения ароматизатора

Ароматизатор приготавливают на участке кухни (в танках приготовления) и перекачивают в резервуары участка ароматизации (танки нанесения) емкостью 1500 и 2500 литров. Танки с соответствующими разгрузочными помпами, вспомогательным и измерительным оборудованием находятся в отдельном помещении, в незначительном удалении от цилиндра ароматизации. Перекачивание приготовленного на участке кухни ароматизатора в тот или иной танк задают на участке кухни. Обязательным условием для перекачки является то, что танк нанесения должен быть пустым.

Силосы окончательного смешивания и хранения

С ленточного конвейера продукт выгружают на реверсивный ленточный конвейер, позволяющий направлять поток либо на ленточный конвейер для загрузки в силосы (PL), либо для загрузки его в силосы CFS (ML-LM). Силос типа SAM используют для смешивания и хранения табака, перераспределения влаги. Смешивающий силос типа SAM состоит из трех основных элементов: загрузочной каретки силоса, короба с подающей лентой, дофферов с системой очистки.

Автоматическая станция добавок

Машина предназначена для взятия наполненной табаком картонной коробки с роликового конвейера, выгрузки табака в питатели и разгрузки пустой коробки на цепные разгрузочные конвейеры. Обратные добавки (Add – Backs: взорванный табак, улучшенная жилка) поставляют в стандартных картонных коробах.

Автоматическая станция добавки риппера

Машина предназначена для взятия наполненной табаком картонной коробки, пластиковой бины или контейнера с роликового конвейера, выгрузки табака в питатели и разгрузки пустой тары на разгрузочные конвейеры (кроме бин). Табачная мелочь для обратной добавки поставляют в пластмассовой таре (бины) или стандартных картонных коробах. Машину используют для разгрузки табака в питатель из пластикового контейнера с табаком.

Буферный питатель-накопитель

Автоматический питатель типа CA/2 позволяет добиться постоянной и однородной подачи резаного табака (CF), жилки (IS) или взорванного табака (DE). Питатель позволяет избежать перебоев в подаче продукта. Питатель состоит из двух основных составных частей: короба с подающим конвейером (F) и поднимающего ленточного конвейера с доффером (счесывающим роликом) (G).

Участок обратных добавок является одним из участков линии по переработке табака табачного цеха и включает в себя станции: загрузки контейнеров, загрузки в питатели-накопители, инициализации.

Целью участка обратных добавок является:

- загрузка добавок в контейнеры (бины);
- хранение добавок в контейнерах (бинах);
- подача добавок на питатели-накопители.

Участок обратных добавок решает несколько задач:

- 1. Получив с участка ароматизации, с линии переработки жилки, с линии производства взорванного табака готовые партии добавок, произвести их загрузку в контейнеры с помощью станции наполнения.
- 2. Произвести расстановку и складирование бин с добавками в зонах хранения с заданными климатическими условиями.
- 3. Обеспечить длительное (до 28 или 42 суток) хранение добавок при поддержании необходимой влажности в заданных пределах.
- 4. Обеспечить заданную программой подачу добавок, необходимых для производства партий на участке ароматизации с соответствующими рецептурными особенностями путем загрузки добавок из бин в питатели-накопители.

- 5. Производить запись информации, производить проверку контейнеров на станции инициализации.
- 6. Обеспечить сбор и хранение информации о действиях и изменении статуса всех контейнеров (бин).

Станция загрузки добавок в контейнеры BFS состоит из трех основных линий: линии загрузки добавок, линии подачи бин, линии разгрузки бин.

Станция загрузки добавок в производство AB включает в себя: приемный стол загрузки контейнеров, линии разгрузки добавок из питателей-накопителей, линии разгрузки пустых контейнеров. Смежным для участка обратных добавок является участок ароматизации. Участками взаимодействия являются:

- участок переработки жилки;
- технологическая линия производства взорванного табака;
- участок упаковки готовой продукции;
- участок переработки сигаретного брака;
- участок хранения резаного наполнителя в контейнерах.

Литература

- 1. Татарченко И.И. Чай, кофе: технология и контроль качества. Учебное пособие. Краснодар: Просвещение-Юг, 2017. 599 с.
- 2. Татарченко И.И. Табак, табачные изделия: технология и контроль качества. Учебное пособие. Краснодар: Просвещение-Юг, 2018. 627 с.
- 3. Алтуньян Ю.В, Татарченко И.И., Кутуков С.А. Снижение массы табака при изменении конструкции сигареты // Хранение и переработка сельхозсырья. 2007. № 11. С. 48-49.
- 4. Татарченко И.И., Воробьева Л.Н., Позняковский В.М. Экспертиза табака и табачных изделий. Качество и безопасность. Новосибирск: Сибирское университетское издательство, 2009. 258 с.
- 5. Осипян А.О., Писклов В.П., Татарченко И.И. Оптимальная технология расширения табачной жилки // Пиво и напитки. 2004. № 5. С. 70-71.
- 6. Осипян А.О., Писклов В.П., Татарченко И.И. Определение влияния содержания расширенной жилки на заполняющую способность табачной мешки // Пищевая промышленность. 2005. № 4. С. 72.